首页 问答社区 正文

变频器过电压 变频器过电压保护怎么处理

本文给大家分享“变频器过电压 变频器过电压保护怎么处理”方面的内容,希望可以帮助大家啊!

变频器过压故障是什么原因造成的?

其次可能是电机受外力影响或位能负载下放。由于这些原因,使电机实际转速高于变频器的指令转速。电机轮子转速超过了同步转速,这时电机的转差率为负,转子绕组切割旋转磁场的方向与电
  其次,造成变频器过压的故障还有,电源过电压和再生过电压,电源过电压是指因电源电压过高而使直流母线电压超过额定值。这种电源引起的过电压很少见。

变频器在什么情况下会出现过电压

1在外部输入电压偏高的情况下
2紧急刹车的情况下,既减速过快的情况下
3内部某些电路出现故障的情况下

变频器过电压报警原因?

变频器过电压是来自进线电压的影响。

如果电网质量不好,有瞬间高电压出现,那势必会造成母线电压过高。偶尔出现的瞬间的电压尖峰很难捕捉到,这为故障的诊断增加了难度。如果用示波器或电能质量分析仪捕捉到进线电压的闪变,确认电网存在电压尖峰的话,那么可以在变频器进线端安装电压尖峰吸收装置以保护变频器。

在打雷时,也可能会对电网电压产生瞬时影响,也可能会造成变频器的过电压故障。不过打雷也是很偶然的事件,不会一直困扰变频器的运行。不过安全起见,工厂应该有防雷措施。

在电机制动(即减速)时,电机和负载的动能转化为电能,处于发电状态,发出来的电在直流母线上累积,造成母线电压越来越高。如果电机的机械系统惯性大,而制动时间短,那么制动功率很大。产生的电能在变频器内不断累积,来不及释放,很容易造成直流母线过电压。针对这种不可避免的情况,变频器设计了很多功能来应对。

扩展资料

变频器节能主要表现在风机、水泵的应用上。风机、泵类负载采用变频调速后,节电率为20%~60%,这是因为风机、泵类负载的实际消耗功率基本与转速的三次方成比例。当用户需要的平均流量较小时,风机、泵类采用变频调速使其转速降低,节能效果非常明显。而传统的风机、泵类采用挡板和阀门进行流量调节,电动机转速基本不变,耗电功率变化不大。

据统计,风机、泵类电动机用电量占全国用电量的31%,占工业用电量的50%。在此类负载上使用变频调速装置具有非常重要的意义。应用较成功的有恒压供水、各类风机、中央空调和液压泵的变频调速。

变频器还可以广泛应用于传送、起重、挤压和机床等各种机械设备控制领域,它可以提高工艺水平和产品质量,减少设备的冲击和噪声,延长设备的使用寿命。采用变频调速控制后,使机械系统简化,操作和控制更加方便,有的甚至可以改变原有的工艺规范,从而提高了整个设备的功能。

例如,纺织和许多行业用的定型机,机内温度是靠改变送入热风的多少来调节的。输送热风通常用的是循环风机,由于风机速度不变,送入热风的多少只有用风门来调节。如果风门调节失灵或调节不当就会造成定型机失控,从而影响成品质量。

循环风机高速启动,传动带与轴承之间磨损非常厉害,使传动带变成了一种易耗品。在采用变频调速后,温度调节可以通过变频器自动调节风机的速度来实现,解决了产品质量问题。

变频器过电压如何解决?

过电压故障解决措施 解决电网过电压对变频器的影响,主要思路是对变频器中间直流回路多余能量进行有效及时处理,同时要预防或者降低多余能量馈送到变频器的中间直流回路,让电网产生的过电压处于一定的允许值内。 1)装设浪涌吸收装置或者串联电抗器作为吸收装置 电网的冲击过电压、雷电导致过电压以及补偿电容在合闸或断开时是造成变频器输入端过电压的主要原因。对于此类隐患,可以在变频器装设浪涌吸收装置或者串联电抗器预防。浪涌吸收装置就是在连接逆变器和电动机的U、V、W相的各动力线间、以及这些动力线和地之间,分别连接半导体浪涌吸收元件。这些半导体浪涌吸收元件在两端子间达到规定的电压以上就流过电流并箝位电压的特性。串联电抗器能够降低电容器组的涌流倍数和涌流频率,提高短路阻抗,减小短路容量,降低短路电流,减小操作电容器组引起的过电压幅值,避免电网过电压保护等作用,是抑制过电压有效方法。 2)调整变频器已设定的参数 如果工艺流程中对负载减速时间不限定,在设置变频器减速时间参数时,以不引起中间回路过电压为限为条件设定,不能太短,避免出现负载动能释放太快情况,尤其是变频器所控制负载惯性较大的设备,减速参数要适当增加;如果生产工艺流程对负载减速时间有一定的要求,为预防变频器在限定时间内出现过电压跳停,要设定变频器失速自整定功能,也可设定变频器的频率值,通过减缓频率降低所控制设备的转速。 3)增加泄放电阻 泄放电阻就是在储能元件两端并联的电阻,给储能元件提供一个消耗能量的通路,使电路安全。这个电阻叫泄放电阻。可以是二极管,如电感(继电器线包)并联的二极管。当前功率较小变频器一般在制造时内部中间直流回路都设计了控制单元与泄放电阻,而大功率的变频器为给其中间直流回路能够很好的释放多余的能量提供通道,应该根据工艺需要增加泄放电阻,从而预防过电压。 4)增加逆变电路 逆变电路基本作用是在控制电路的控制下,将中间的直流电路输出的直流电源转换为频率和电压都任意可调的交流电源,在变频器的输入侧增加逆变电路,可以使变频器中间直流回路多余的能量回馈给电网。但造价较高,技术要求复杂。 5)在中间直流回路上加合适电容 根据变频器的容量以及其中间直流回路的电流电压的估算,可以在其中间直流回路上增加合适的电容,此电容能够稳定回路电压,提升回路承受过电压的能力,也可在设计阶段选用较大容量的变频器来有效防治过电压的影响。 6)降低工频电源电压 当前,常用变频器电源侧均是采不可控整流桥,其特点是电源电压较高,中间直流回路产生的电压也跟着升高。譬如电源电压为380V时,变频器的直流回路电压达到537V,如果变频器离变压器的位置较劲,其输入电压一般为400V以上,导致中间直流回路承受过电压会更高。因此,在条件容许下,可利用变压器的分接开关,通过低压档的放置降低电源电压来提升变频器过电压能力。 7)多台变频器共用直流母线 可根据实际需要进行设计将多台变频器的直流母线回路并联在一起(变频器本身设计有外接的直流母线输出端子),这样任何一台变频器从直流母线上取用的电流通常情况下都是大于同时间从外部馈入的多余电流,可以保持共用直流母线的电压,因此,至少两台同时运行的变频器具有共用直流母线能够平衡变频器的直流母线电压,使设备启动、停止时对电网的冲击也低,同时在电机停机成了发电机,能量回馈到直流母线。 8)通过控制系统功能优势解决变频器过电压问题 变频器的减速和负载的突降一般受在工艺流程中的受控制系统控制。因此,可以在变频器的减速和负载的突降前,通过支配的工艺流程控制系统对变频器进行控制,降低过多的能量馈入变频器的中间直流回路。譬如把变频器输入侧的不可控整流桥换成半可控或全控整流桥规律性减速过电压,在工艺流程减速前,可以把中间直流电压控制符合要求低值范围内,同时增加了中间直流回路承受馈入能量的能力,预防过电压。如果生产工艺流程使变频器规律性负载突降,在负载突降前,可以通过FOXBORO的DCS集散系统的控制功能的控制系统,适当提升将变频器的频率,减少变频器中间直流回路被负载侧过多的能量馈入。 过电压对变频器的影响:通用变频器的基本组成电路是整流电路和逆变电路两部分,整流电路是将工频交流电整流成直流电。逆变电路再将直流电逆变成频率和电压可调的交流电。变频调速装置一般是均采用交一直一交电压模式。变频器过电压一般是指中间直流回路过电压,其危害主要有以下三点:一是电网电压升高会增加电机铁芯磁通,很容易造成磁路饱和,加大励磁电流,导致电机温升过大,损伤电机;二是电网电压升高会使中间直流回路电压升高后,变频器输出电压的脉冲幅度过大,对电机绝缘寿命有很大的影响;三是对中间直流回路滤波电容器寿命影响很大,甚至会引起电容器爆裂

本文的分享就到这里了,相信大家阅读完本文,可以更好的了解关于“变频器过电压 变频器过电压保护怎么处理”方面的内容。
海报

本文转载自互联网或由网友投稿发布,如有侵权,请联系删除

本文地址:https://www.yushouy.com/robots/643c95a1.html

相关推荐

看起来这里没有任何东西...

发布评论

感谢您的支持