首页 问答社区 正文

人工智能为什么用python

大家好今天来介绍人工智能为什么用python 的问题,以下是机器人网小编对此问题的归纳整理,来看看吧。

文章目录列表:


这属于一种误解,人工智能的核心算法是完全依赖于C/C++的,因为是计算密集型,需要非常精细的优化,还需要GPU、专用硬件之类的接口,这些都只有C/C++能做到。所以某种意义上其实C/C++才是人工智能领域最重要的语告态好言闭卖。
Python是这些库的API
binding,使用Python是因为CPython的胶水语言特性,要开发一个其他语言到C/C++的跨语言接口,Python是最容易的,比其他语言的ffi门槛要低不少,尤其是使用Cython的时候。其他语言的ffi许多都只能导入C的函数入口点,复杂的数据结构大多只能手工用byte数组拼起来,如果还需要回调函数输入那就无计可施了。而CPython的C
API是双向融合的,可以直接对外暴露封装过的Python对象,还可以允许用户通过继承这些自定义对象来引入袜铅新特性,甚至可以从C代码当中再调用Python的函数(当然,也有一定的条件限制)。不过这也是PyPy这样的JIT解释器的一个障碍。
而且Python历史上也一直都是科学计算和数据分析的重要工具,有numpy这样的底子,因为行业近似所以选择API
binding语言的时候会首选Python,同时复用numpy这样的基础库既减少了开发工作量,也方便从业人员上手。


为什么做AI的都选Python?


答: 主要有以下的一些见解,欢迎和你探讨。

  1. 主流的深度学习框架基本上都是用Python开绝闹发的,虽然说弯毁他们也提供了其他语言的接口,但是用起来还是没有Python这么方便;
  2. Python里面有非常多的科学计算包,各种具有实用功能的库,大大提高了开发效率,对于AI而言,最开始呢是在学术上有着大量的运用,而使用Python,非常方便进行仿真。学术研究成功之后呢,慢慢在工业界越来越多了;
  3. Python的包埋宏备装能力,组合能力,嵌入式能力非常强,可以把各种复杂性包装在 Python 模块里,暴露出漂亮的接口。也非常方便其他语言的调用。

希望可以帮助到你~


为什么python是人工智能最好的语言


选择Python作为基于AI的项目有几个原因,从使用较少的代码到预构建的库。这就是为什么Python是AI和机器学习的好语言:
少代码
选择Python进行AI开发项目的一个主要优点是可以使用的代码更少。为了更好地理解这一点,与其他编程语言(如Java,Ruby和Simula)(第一种面向对象的编程语言)相比,Python可以使用通常所需的总代码量的五分之一来实现相同的逻辑。
虽然人工智能涉及多种算法,但Python提供的测试简易性使其成为竞争对手中最有效的编程语言之一。 Python使得执行所需代码变得更加容易,因此完成一项工作所需的时间更少。
灵活性
由于Python是一种动态类型语言,因此非常灵活。简而言之,这意味着没有“硬性规则”概述如何构建功能。
Python在解决问题方面也提供了更大的灵活性,这对于初学者和经验丰富的Web开发人员来说都很有用。
声望
除了最适合Web开发中的人工智能之外,由于语法比其他编程语言(如Java)更短,因此该语言易于学习。因此,Python在全球范围内越来越受欢迎,从小型企业到负责客户网站的营销机构。
它也很容易安装,并且根据Python软件基金会的说法,“现在很多Linux和UNIX发行版都包含最新的Python”,这使兄卜扒得它更容易上手羡昌。
预建库
无论您是经验丰富的Web开发人员还是被要求领导您的企业下一个AI开发项目,您都可以从Python的预构建库中受益。一些可以帮助您实现AI的库包括:
NumPy - 除了明显的科学用途外,NumPy还可以用作通用数据的高效多维容器。
Tensorflow - TensorFlow是一个用于弊滚高性能数值计算的开源软件库。其灵活的架构允许在各种平台(CPU,GPU,TPU),桌面,服务器集群,移动和边缘设备上轻松部署计算。
ELI5 - ELI5是一个Python包,它有助于调试机器学习分类器并解释它们的预测。
Pandas - Pandas是一个Python包,提供快速,灵活和富有表现力的数据结构,旨在使结构化(表格式,多维,可能异构)和时间序列数据的使用既简单又直观。
Theano - Theano是一个Python库,允许您定义,优化和有效地评估涉及多维数组的数学表达式。
其他库如Norvig可用于实现人工智能算法,有助于节省宝贵的时间。

为什么说python是人工智能的首选语言


为什么Python是人工智能技术首选的编程语言?
原因1:Python是一种说人话的语言
所谓"说人话",是指这种语言:
开发者不需要关注底层
语法简单直观
表达形式一致
我们先来看几个代码的例子:
C 语言Hello World 代码:
int main(){ printf("Hello, World!"); return 0;}
Java 语言Hello World 代码:
public class HelloWorld { public static void main(String[] args){ System.out.println("Hello World!"); }}
Python 语言Hello World代码:
print("Hello World!")
仅仅是一个Hello World程序,就能看出区别了,是不是?
编译 VS 解释
当然,仅仅是一个Hello World的话,C和Java的代码也多不了几行。
可是不要忘了,C和Java的代码要运行,都必须先经过编译的环节。
对于C语言来说,在不同的操作系统上使用什么样的编译器,也是一个需要斟酌的问题。一旦代码被copy到新的机器,运行环境和之前不同,还需要重新编译,而那台机器上有没有编译器还是一个问题,安装上编译器后,也许和之前最初的编译器有所区别,还得修改源代码来满足编译环境的需求……
我到底做错了什么?我只是想运行一个别人写的程序而已。
而Python则不用编译,直接运行。而且都可以不用写文件,一条条语句可以直接作为命令行运行,真的太方便了。
语言语法
和Python比,Java的语法更"啰嗦"。
从上面的例子已经可以看出,创建一个链表,Java还需要声明和逐个插入节点稿陆,而Python则可一行代码完成从链表创建到插入节点及赋值的全部操作。
Java非让你很别扭地写好几行,Python直接一句搞定。
这样的结果就是,Python写起来省事,读起来也方便。可读性远超Java。
表达风格
在10年或者更久远之前,Python经常被用来和Perl相提并论。键毁顷毕竟在那个时候,C是系统级语言,Java是面向对象语言,而Python & Perl则是脚本语言的双子星。
Python和Perl在设计层面有一个非常大的区别:
Python力求让不同的人在撰写同样功能实现的代码时,所用的表达形式尽量一致;
而Perl则是故意追求表达的千姿百态,让同一个人在不同地方写同样功能时所用具体形式都不同。
从哲学层面讲,Perl的追求更加自由主义,更利于释放人类的多样化天性。然而,Perl写的程序——那叫一个乱七八糟!
如果不是想成为代码诗人,或者语言大师,只是想用尽量简单直接的方法,把事情做了,首选语言确实是Python。
原因2:强大的AI支持库
矩阵运算
NumPy由数据科学家Travis Oliphant创作,支持维度数组与矩阵运算。结合Python内置的math和random库,堪称AI数据神器!有了它们,就可以放心大胆玩矩阵了!
大家知道,不管是Machine Learning,还是Deep Learning,模型、算法、网络结构都可以用现成的,但数据是要自己负责I/O并传递给算法的。
而各种算法,实际上处理的都是矩阵和向量。
使用NumPy,矩阵的转置、求逆、求和、叉乘、点乘……都可以轻松地用一行代码搞定,行、列可以轻易抽取,矩阵分解也不过是几行代码的问题。
而且,NumPy在实现层对矩阵运算做了大量的并行化处理,通过数学运算的精巧,而不是让用户自己写多线程程序,来提升程序效率。
有了Python这种:语法简洁明了、风格统一;不需要关注底层实现;连矩阵元素都可以像在纸上写公式一样;写完公式还余高能自动计算出结果的编程语言,开发者就可以把工作重心放在模型和算法上了。

以上就是小编对于人工智能为什么用python 问题和相关问题的解答了,希望对你有用

海报

本文转载自互联网或由网友投稿发布,如有侵权,请联系删除

本文地址:https://www.yushouy.com/robots/8084346f.html

相关推荐

看起来这里没有任何东西...

发布评论

感谢您的支持