大家好今天来介绍脉冲雷达 的问题,以下是机器人网小编对此问题的归纳整理,来看看吧。
文章目录列表:
- 1、脉冲雷达的缺点是什么
- 2、脉冲多普勒雷达和相控阵雷达有什么区别
- 3、
- 4、
- 5、脉冲多普勒雷达工作原理是什么?
脉冲雷达的缺点是:航区测量范围偏小,不能连续跟踪。
为了扩大航区测量范围,常沿航区纵列配置多台雷达,实现对目标的接力跟踪测量,称为雷达链,即当前一站雷达在不能继续跟踪或“看不见”目标之前,后一站雷达已将其捕获。各台雷达同步工作,给出实时截获数据。
简介:
脉冲雷达是雷达的一种。能够辐射较短的高频脉冲,然后天线转接到接收机接收信号,因此发射和接收信号在时间上是分开的。脉冲雷达用于测距,尤其适于同时测量多个目标的距离。当前常用的雷达大多数是脉冲雷达。
一、工作原理
脉冲测量雷达通过测量脉冲电磁波往返时间延迟得到目标的距离信息,根据接收脉冲载波中的多普勒频率测量目标的径向速度,利用等信号法获得目标的方位角和俯仰角数据。圆锥扫描雷达的跟踪原理是:天线波束偏离雷达瞄准轴(等信号轴)一个小的角度,并绕瞄准轴快速旋转,在波束最大增益方向扫成一个圆锥体,使目标隐棚回波幅度呈正弦调制。对信号解调和鉴相可得到瞄准轴与目标之间的角误差信号,用以控制天线向减小目标偏角的方向转动,实现角度跟踪。单脉冲雷达则用4个相对于等信号轴对称配置的接收□叭同时接收回波,上、下对与左、右对□叭所接收到的信号进行比较,得到误差信号,用以控制天线转动,当转动到两对□叭接收到的信号相等时就完成了角度跟踪。在雷达跟踪的同时,可从天线座的角编码器读出方位角和俯仰角数据。单脉冲比闷厅圆锥扫描方式测角精度高、数据率高、抗干扰能力强灶罩则。对目标回波信号波形的测量、分析和处理可以得到有关目标反射截面、翻滚速度、极化特性等信息。
二、工作方式
脉冲测量雷达有三种工作方式:
①反射式:雷达接收目标的反射信号。这种工作方式常用于近距离目标的跟踪,获得火箭动力段信息和再入目标的特性数据。
②应答式:雷达接收飞行器上应答机转发的信号。这种方式转发信号强,雷达作用距离远,抗干扰能力强,用于远距离目标的测量。应答式工作又可分为相参应答式和非相参应答式两种。采用相参应答式工作时,应答机的收、发频率之间保持严格的倍数关系。
③信标式:雷达只接收飞行器上信标机发射的信号,不能测距,只用于捕获目标。
脉冲多普勒雷达和相控阵雷达有什么区别
雷达是利用电磁波传播的直线性、匀速性及目标对电磁波的反射现象来发现目标并测定其位置的。其中,脉冲多普勒雷达和有源相控阵雷达就是两种性能比较突出、应用比较广泛的雷达。
脉冲多普勒雷达,简称PD雷达,是一种应用多普勒效应在强背景(地、海面)杂波下发现运动目标,并测量其位置和相对速度的脉冲雷达。所谓多普勒效应是指相对运动物体回波与雷达发射波之间存在着频移,频移的大小与相对速度成正比。20世纪70年代的局部战争中,低空、超低空入侵成为主要威胁。由于地面杂波的严重干扰,采用一般脉冲雷达很难探测和发现低空入侵敌机或巡航导弹。脉冲多普勒雷达较好地解决了这一难题。正是由于它具有较强的抑制地物杂波干扰和测速能力,目前已广泛用于机载火控雷达、预警雷达以及战场侦察、靶场测量等雷达中。第三代战斗机中,如F-15、F-16、苏-27等机载火控雷达大都采用了这种技术,使飞机具有“下视”、“下射迹尺”能力。
相控阵雷达技术的使用稍后于脉冲多普勒雷达。雷达在搜索目标时,需要不断改变波束的方向。改变波束方向的传统旦明方法是转动天线,使波束扫过一定的空域、地面或海面,称为机械扫描。把天线做成一个平面,上面有规则地排列许多个辐射单元和接收单元,称为阵元姿迟高。利用电磁波的相关原理,通过计算机控制输往天线各阵元电流相位的变化来改变波束的方向,同样可进行扫描,称为电子扫描。接收单元将收到的雷达回波送入主机,完成雷达的搜索、跟踪和测量任务。
相控阵雷达可监视、跟踪的目标达数百个,对复杂目标环境的适应能力强,大型相控阵雷达作用距离远,可达7000千米。但相控阵雷达设备复杂、造价昂贵,且波束扫描范围有限,最大扫描角为90度~120度,当进行全方位监视时,需配置3个~4个天线阵面。
随着科学技术的发展,制约相控阵雷达技术发展的难点已逐渐被解决。以色列为智利研制的“费尔康”预警机是世界上第一架相控阵雷达预警机,已于1995年5月交付智利空军。美国的F-22、F-35战斗机分别装备了AN/APG-77、AN/APG-81相控阵雷达。美军还计划对部分F-15、F-16、F-18战斗机改装相控阵雷达,以提高其技战术性能。
以上就是小编对于脉冲雷达 问题和相关问题的解答了,希望对你有用